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Statistical mechanical theory for discotic liquid crystals 

Discotic nematic-isotropic transition properties 

by K.  SINGH and U. P. SINGH 
Department of Physics and Electronics, Avadh University, Faizabad, India 

and S. SINGH 
Department of Physics, Banaras Hindu University, Varanasi 22 1005, India 

(Received 31 August 1987; accepted 17 December 1987) 

A statistical mechanical theory is applied to study the equilibrium properties 
of discotic nematic liquid crystals. We report the calculation of thermodynamic 
properties for a model system composed of molecules interacting through angle- 
dependent pair potentials which can be broken up into rapidly varying short- 
ranged repulsions and weak long-range attractions. The repulsive interaction is 
represented by a repulsion between hard oblate ellipsoids of revolution and is a 
short-range, rapidly-varying, potential. The influence of attractive potentials, 
represented by dispersion and quadrupole interactions on a variety of thermo- 
dynamic properties is analysed. It is found that the thermodynamic properties for 
the discotic nematic-isotropic transition are highly sensitive to  the form of effective 
one-body orientational perturbation potential. The discontinuity in the transition 
properties is more pronounced in the case of quadrupole interaction than for 
anisotropic dispersion interaction. A remarkable symmetry in the transition 
properties between prolate ellipsoids (ordinary nematic) and oblate ellipsoids 
(discotic nematic) is observed. 

1. Introduction 
As is well accepted, a fundamental criterion to determine whether or not a 

substance exhibits a liquid-crystalline phase is the geometrical anisotropy of the 
molecule. The most generally accepted rule has been that the molecule must be 
elongated or rod like for mesomorphism to occur in non-amphiphilic systems. But 
about 10 years ago, exception to this rule was observed by Chandrasekhar and 
co-workers [ 13 who found that pure compounds composed of disc-shaped molecules 
may also form stable thermotropic liquid crystals. They have been shown to comprise 
a new class of liquid-crystalline phases, the discotic phases, some of which have been 
observed to exhibit a ‘fluid’ phase with only a long-range orientational order, i.e. a 
discotic nematic phase. Activities in this new kind of mesomorphism are quite intense 
because of the potential importance of such systems in applications and due to the 
very interesting physics of the mesophases themselves. A unique situation occurs in 
discotics: in one dimension the system has the properties of a liquid, and in the other 
two it is a solid, i.e. it is a system ‘melted’ in one dimension. This indicates the absence 
of correlations only in the arrangement of the centres of mass of the molecules along 
a straight line. 

The purpose of this paper is to give a molecular description of the equilibrium 
properties of discotic phase by using the perturbation theory developed elsewhere 
[2, 31 for rod-like molecules. We assume that disc-shape molecules are oblate ellipsoids 
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618 K. Singh et al. 

of revolution parametrized by length-to-width ratio x. Considering the variation of 
x from values less than one (oblate molecules) to greater than one (prolate molecules) 
the results are considered for ordinary nematic (rod-shape) to discotic nematic. A 
brief account of the perturbation method and the working equations is given in 8 2 .  
Results and discussions are presented in 9 3. 

2. Theory and working equations 
We consider a system composed of N axially symmetric nonspherical nematogenic 

molecules contained in a volume V at temperature T which interact through a pair 
potential function by 

where the vector = ( T I ,  Q,) represents both the position of centre of mass and 
orientation of the ith molecule. U , ( X ,  4) represents the reference potential and is 
described by the repulsion between hard ellipsoids of revolution parametrized by the 
length to width ratio x = a/b, where 2a and 2b denote, respectively, lengths of major 
and minor axes of revolution. The perturbation potential Up(&,  q)  contains the more 
smoothly-varying, long-range, attractive part. 

Assuming the pairwise additivity of the interaction potential and following the 
statistical mechanical machinery as outlined earlier [2], the perturbation series for the 
Helmholtz free-energy is written as 

m PAW 
N = $+;,,, ( 2 )  

where A ,  is the contribution of reference system and 

represents the perturbation terms. s denotes the order of perturbation, and $'"'(R, ) is 
defined as an effective one-body orientational perturbation potential 

where g('-')(FI2, R, , a,) is pair correlation function (PCF) for all s. For s = I ,  
go(?,,, Q, ,  R,) represents the PCF for reference system. The first order perturbation term 
envolves hard ellipsoid's PCF go(?,,, R,  , a,) only. The PCF is related to the probability 
of finding a hard ellipsoid with known orientation at a given distance from the 
reference hard ellipsoid whose position and orientation is known. All the other terms 
have their usual meaning [2 ] .  

In order to calculate the thermodynamic properties of a system of hard ellipsoids 
we start with the pressure relation 
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Theory of discotic nematic liquid crystals 619 

Here the operator V acts only on the F,, coordinates of U,,(F,, , R,,). The hard ellipsoid 
potential U,, satisfies the relation 

UO(FI*, Q,,) = UO[~lZ/D(QI2)1 

co for r;", < 1, 

0 for r;", > 1, 
= U,,(rT,) = 

where D(R,,) [ = D(?,,, R,  , a,)] is the distance of closest approach of two molecules 
with relative orientation R,,; r;", = IFI21/D(Rl2). It is pertinent to mention here that 
equation (5) involves the hard ellipsoid's pair correlation function (PCF), gcO). In 
general a detailed knowledge of PCF as a function of r l z ,  R,  , R, (in total five scalars: 
r,,, F,, - R , ,  TI, * R2, R,  * R2 and R,  x R, - PI,) is needed for evaluating equation (5). 
However, in our present development we need to know only go(?,,, R,, )  which is 
defined as 

where i,, is unit vector along the axis joining the centres of the two ellipsoids. 
The integration in (7) is performed by keeping the relative orientation R,,  between the 
two molecules fixed. Unfortunately, we know very little about go(?,,, R, , Q,) and, 
therefore, about go(?,,, R,,). Following Parson [4] we, therefore, assume that 
go(?,,, R,, )  can be approximated by go[[r,,/D(Rl,)] which decouples the orientational 
degrees of freedom from the translational ones to all orders in the density, i.e. 

i0(FI2> QId = g0"r,,/~(~Z,2)1 

= goHs(r;l;), (8) 

Using equation (7), we get 

(9) - -  Bpo - 1 + tegFIs(1) j f ( Q M R ,  1 f ( Q 2 ) d R *  K X C ( Q l A  
e 

where F&(R,,) is the excluded volume, or co-volume, between the two ellipsoids of 
revolution 

K x c ( Q 1 2 )  = - @(:I,, ~ , , ) d : , ,  3 

8&(1 - ~ * ) ~ ' ' ~ ( 1  - X ~ C O S ~ O , ~ ) ~ ' ~ ,  (10) 

gHs( 1) is the value of the hard sphere radial distribution at contact, & the volume of 
a molecule, and 

' i  
= 

x2 - I x = =  
Equation (9) now reduces to 
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620 K.  Singh et al. 

where 

(12) 

1 1 2 x  . . . I 9  (13) 

(14) 

( I  - x2)-112[1 - i x 2  - &*4 - 1 

'I = ev,, 

s, = f(Q)&P,(COSO), I 
Fo(x) = 

F2(x) = 1 3 x  2 ( 1 - x 2 ) - 1 / 2  [l  + AX2 + $24 + & $ g 6  + . . . I .  

The Helmholtz free-energy per particle for the reference system can now be written 
as 

The angular bracket ( ) denotes the ensemble average over the N - 1 particles of 
the system. 

The Helmholtz free-energy in the first-order perturbation is given by 

where 

We approximate the perturbation potential by the relation 

' p ( Y 1 2 r  Q 1 ,  '2) = -r126[Cid + C~,P,(COSQ~~)I 

- r ~ s C u y P 2 ( ~ ~ ~ O I Z )  for r , ,  > ~(n,,), (18) 
where C,, and Cud are constants related with the isotropic and anisotropic dispersion 
interactions and C,, represents the anisotropic quadrupole interaction strength. O , ,  is 
the angle between the orientation of two molecules. 

Reducing the distance variables in equation (17) with D(QI2) and taking the Berne 
and Pechukas [5] expression for D(F12, Q,,), 

(19) 

where Do = 2h. We obtain the following expression for the effective one-body 
potential 

$(lycosOl) = - 6 0  - ~ * s z P , ( c o s e , )  - ~ 4 s 4 P 4 ( c o s ~ l )  (20) 

where 
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Theory of discotic nemcltic liquid crystals 

with 

62 1 

In equation (19) C, and C2 are the unit vectors along the symmetry axes of two 
interacting ellipsoids. A t ) ,  A p )  and A t )  (with iz = 5 and 6) are constants appearing in 
the integral 

We have evaluated this integral for fixed relative orientation C, - C2 = C O S ~ , ,  and 
present our results in the following form 

1 
f , (O, , )  = - [Ag’ + A Y ’ P ~ c o s ~ ~ ~ )  + A ~ ’ p 4 ( c ~ ~ 8 1 , )  + . . . I .  (24) K 3  

The values of constants A:) (m = 0 , 2  and 4, n = 5 and 6) are evaluated as a function 
of x for a system of oblate ellipsoids (x < 1.0). These values are listed in table I 
and 2. 

Table 1. The values of constants of equation (24) for the potential model of equation (18) 
with C,, = 0 representing the dispersion interaction as function of length-to-width 
ratio x. 

X Ahh) 

0.9 13.9717 
0.8 15.7478 
0.7 18.0497 
0.6 21.1335 
0.5 25.4555 
0.4 31.9220 
0.3 42.6367 
0.2 63.8539 
0.1 126.3784 

0.1 184 
0.6205 
1.8736 
46049 

10.3348 
22.521 1 
50.1284 

122.0767 
390.2 147 

0.0006 
0.0131 
0.0999 
0.495 I 
1.9851 
7.1916 

25.4296 
95.48 I7 

470.7925 

A?’ 
__- 

0~0000 
0.0002 
0.0044 
0.0438 
0.3 I29 
1.8787 

10.5063 
60.5488 

476.2758 

A ! b )  

0~0000 
0~0000 
0.0002 
0.0035 
0.0450 
0.4465 
3.9442 

35.5568 
490.8973 

A(h’ 
10 

~~ 

0~0000 
0~0000 
0~0000 
0.0003 
0.0062 
0.1061 
1.608 1 

26.654 I 
73 1.2206 

A!h) 
-~ 

0~0000 
0~0000 
0~0000 
0~0000 
0.0008 
0.0246 
03904 

14.2940 
540.3548 
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622 K.  Singh et al. 

Table 2. The values of constants of equation (24) for the potential model of equation (18) 
with Cod = 0 representing the isotropic dispersion and anisotropic quadrupole 
interaction as function of lcngth-to-width ratio x .  

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

13.4800 
14.5743 
15.9067 
17.5621 
19.6738 
22.4657 
26.3565 
32.2732 
43.0455 

0.0686 
0.3423 
0.9760 
2.2426 
4.6400 
9.1272 

17.7095 
35.1835 
76.82 15 

0.0003 
0.0058 
0.04 17 
0.1925 
0.7092 
2.31 I6 
7.1071 

2 1.7728 
73.0866 

0~0000 
0~0001 
0.00 16 
0.0 146 
0.0957 
0.5159 
2.5063 

11.7845 
6 1.9298 

0~0000 
0~0000 
0~0000 
0.00 10 
0.0122 
0.1088 
0.8343 
6.0938 

54.4075 

0~0000 
0~0000 
0~0000 
0~0000 
0.00 1 5 
0.0233 
0.3029 
3.9812 

70.8097 

0~0000 
0~0000 
0~0000 
0~0000 
0.0002 
0.0050 
0.1029 
2.003 1 

47.1 559 

The integrals Z5(yl) and Z,(yl) as defined by the relation 

I,(@, = S d r r 2 r ~ ~ - n g t i ( r ~ 2 )  (25) 

are approximated from the series proposed by Larsen et al. [6] 

I n ( @ * )  = Ju,n + J,.,@* + J,,nQ*2 + J,,,e*’ + J ~ , , , Q * ~  + J ~ , , , Q * ~ ,  (26) 
where 

6 
@* = - 6 .  

n 

The coefficients Jnl,,,s are listed by Larsen et al. [6] for several value of n 
(=  0 to 24). 

The values of 4,,, 42 and 44 are given in table 3 for x = 0.9, 0.8, 0.7 and 0.6. We 
see from the table that the average contribution of 42 and q54 increases as x decreases. 

Table 3. The values of functions 4:, $;, 4: and 4:/4; (as defined in equation (20)) as 
function of packing fraction q and length-to-width ratio x for the dispersion interaction 
(equation (18) with Coy = 0) with C,$/C$ = 8, 4: = &/C,$. 

4: 14; 
~- 

4: 
- --  

.Y v 4: 4; 
_ _ _ _ _ _ ~ -  ~ ~~~~ 

0.9 0.4 0.7 I87 0.0961 0.0004 0.0438 
0.5 1.0063 0.1 346 0.0006 0.0438 
0.6 1.3446 0.1 798 0.0008 0.0438 
0.7 1.7329 0.23 1 8 0.00 10 0.0438 

0.8 0.4 0.7206 0.1 194 0.0024 0.0204 
0.5 1.0090 0.1672 0.0034 0.0204 
0.6 1.3482 0.2233 0.0045 0.0204 
0.7 1.7375 0.2879 0.0059 0.0204 

0.7 0.4 0.7239 0.1680 0.0089 0.0532 
0.5 1.0136 0.2352 0.01 25 0.0532 
0.6 1.3543 0.3143 0.0167 0.0532 
0.7 1.7454 0,405 1 0.02 16 0,0532 

0.6 0.4 0.7285 0.2547 0.0276 0.1086 
0.5 1.020 1 0.3566 0.0387 0.1086 
0.6 1.3630 0.4765 0.05 I8 0.1086 
0.7 1.7566 0.6141 0.0667 0.1086 
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Theory of discotic nematic liquid crystals 623 

Table 4. The values of functions I$;, 4;, 4: and $:/@ (as defined in equation (20)) as 
function of packing fraction q and length to width ratio x for thc isotropic dispersion and 
anisotropic quadrupole interactions (equation (18) with C,, = 0) with C,$/C$ = 8, 
4: = 4nic,;. 

X tl 

0.9 

0.8 

0.7 

0.6 

0.4 
0.5 
0.6 
0.7 
0.4 
0.5 
0.6 
0.7 
0.4 
0.5 
0.6 
0.7 
0.4 
0.5 
0.6 
0.7 

4; 
~ .~ 

0.7187 
1.0063 
1.3346 
1.7329 
0.7206 
1.0089 
1.348 1 
1.7373 
0.7238 
1.0134 
1.3539 
1.7448 
0.7283 
1.0197 
1.3622 
1.7753 

4; 
~ -~ 

0- 1537 
0.2088 
0.2708 
0.3392 
0.1 767 
0.2409 
0.3 138 
0.3945 
0.2248 
0.3082 
0.4035 
0.5101 
0.3 103 
0.4278 
0.5631 
0.7157 

0.0004 
0.0006 
0.0007 
0.0009 
0.0024 
0.0032 
0.0043 
0.0054 
0.0087 
0.0 120 
0.0158 
0.020 1 
0.0270 
0.0374 
0.0494 
0.0630 

0.0027 
0.0027 
0,0027 
0.0027 
0.0135 
0.0135 
0.0135 
0.0135 
0.0388 
0,0388 
0.0388 
0.0388 
0.0870 
0.0870 
0.0870 
0.0870 

The contribution of 44 is about 4 per cent of that from 4, for x = 0.9 and about 
10 per cent for x = 0.6. Thus the contribution of 44 for x < 0.6 is substantial and 
cannot be neglected. A similar conclusion can also be drawn from table 4. The 
variations of 4; and 4: as a function of V * ,  where 4: = 4n JC,; and V* = I/@*, are 
shown in figures 1 and 2 for several values of x. A linear volume dependence of 4, and 
44 are seen. Similar dependences have been seen [2, 31 in case of prolate ellipsoids. In 
the present work we limit ourselves to the case x d 0.6 and approximate the effective 
one-body orientational protential $(a) by the first two terms of equation (20) 

$(Q> = - 4 0  - 42S~2(COS4). (27) 

Here and onward we drop the subscript 2 from S, . Equation (1 6) for x d 0.6 now 
becomes 

PA"' - -  - - P40 - 842S2. N 

The excess configurational Helmholtz free-energy can be written as 

where 

and 

- =  P A  (In[Qnf(R)]) + C, - B2S2, N 
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t -1.75 

- 0.1 - 0.05 0.0 0.05 0.1 

log v *  - 
Figure 1. The volume dependence of the interaction parainetcr &T for the effective one-body 

orientational potential for C,$/CG = 8. The number on the curve indicates x. Solid and 
dashed lincs represent potential models given by equation (18) with C,, = 0 and C,, = 0 
rcspcctively. 

- 1 . C  

- 2 . 0  

- 3 . 0  

t - * ~ - 4 . 0  
a 
N - 
0 
-0 -5.0 

- 6.0 

- 7.0 

- I  

- - -__ ------- - -  -- - - 
------- 

I I ---I 
-0.05 0.0 0.05 0.1 

Lop v+- 
Figure 2. The volume dependence of the interaction parameter $2 for the effective one-body 

orientational potential for C,$/C$ = 8. The number on the curve indicates x. Solid and 
dashed lines represent potential models given by equation ( I  8) with Cuy = 0 and C,, = 0 
respectively. 
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Theory of discotic nematic liquid crystals 625 

The minimization of the free-energy with respect to the variation off (Q), subject 
to the constraint 

j f ( Q ) d Q  = 1 (32) 

determines the one-particle orientational distribution at a fixed temperature and 
pressure. From equation (29) and (32),f(R) can be written as 

exp [2B2 SP, (cos O)] 

f(*) = I exp [2B,SP2(cos O)]dQ ’ 
(33) 

which leads to an equation for the lowest order parameter 

exp [2B,SP2(cos O)]P2(cos 0)dQ 

exp [2B2SP,(cos O)]dQ 
(34) 

s =  I 
The discotic nematic-isotropic (DNI) transition at constant pressure is located by 

equating the pressure and chemical potentials of the two phases 

(35) 1 Pnem(I]nc 9 T, 2 sc 1 
Pncm(I]nc > T, 9 Sc 1 

= ~ i s o ( ~ , c  9 T, 1, 
= ~ i s o ( ~ ] i c  7 T, 1. 

S, is determined from equation (34). If we keep the pressure fixed, we get four 
equations involving four unknowns I],,, I],,, T, and S,. These unknowns can be 
determined by solving simultaneoulsy equations (34) and (39 ,  with plso = fixed 
pressure. 

3. Results and discussions 
We investigate first the effects of length-to-width ratio x and potential parameters 

Ci,, C,, and C,, as defined in equation (18) on the thermodynamic properties of 
nematic-isotropic phase transition of ordinary nematic as well as discotic nematic 
phases. Numerical calculations are done for two model potentials. The first model 
assumes C,, = 0 in equation (1 8) whereas the second puts Cad = 0. These choices 
enable us to investigate separately the effect of anisotropic dispersion and quadrupole 
interactions on the NI transition properties. The method and details of calculation are 
similar to that described by Singh and Singh [2, 31. We compare the results obtained 
for these two model potentials. 

The calculation has been made for systems of ellipsoids (prolate x > 1; oblate 
x < 1) by retaining up to the S, term only in equation (20). For a given x the potential 
parameters are selected so as to reproduce quantitatively the NI transition tem- 
perature T, N 409 K (for the ordinary nematic phase) and N 600 K (for the discotic 
nematic phase). These values correspond, respectively, to the T, of PAA (ordinary 
nematic) and hexa-q-hexyloxy benzoate of triphenylene (discotic phase). Other tran- 
sition parameters are determined self consistently by an iterative procedure. However, 
the potential parameters can also be estimated from the latent heat of vaporization 
which is an experimentally measurable quantity. For PAA the value of C,, is 
5 1-23 x 10-j6ergcm6. 
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626 K. Singh et al. 

I I I I I 
2.0 1 . 5  1.0 1.5 2.0 

1 I- y x- 

Figure 3. Variation of C z / k  as a function of x (for prolate) and I/x (for oblate) with 
C$/C& = 8.0. Solid and dashed lines are for dispersion and quadrupolar. 

The variation of the interaction strength C z / k  as a function of x is plotted in 
figure 3. Figure 4 is a plot of packing fraction, order parameter and the relative change 
in density at the transition as a function of x. We see from the figure 3 that C z / k  takes 
a maximum value for x = 1.0 and decreases on either side as the shape anisotropy 
increases. Further, as shown by figure 4 all the transition properties vary smoothly 
around x N 1.0; the packing fraction is maximum whereas the order parameter and 
relative change in density at the transition are minimum. 

Figure 5 shows the variation of T, with C,l;/k for discotic nematic phase. In 
table 5 we list a number of transition properties at the discotic nematic-isotropic 
transition. In this table the parameter r is a measure of the relative sensitivity of the 
order parameter to volume change (at constant temperature) and temperature change 
(at constant volume). It is defined as 

The pressure dependence of the transition temperature (dT/dp) is obtained by Clausius- 
Clapeyron’s law. AX/Nk is a measure of the change in entropies at the transition. It 
can be observed from figure 4 and table 5 that, as physically expected for both the 
model potentials, the phase transition is shifted with increasing x to higher tem- 
perature with higher value of density and C,l;/k but lower values of order parameter, 
relative change in density, entropy change, (LIT,,/&) and r. From numerical calcu- 
lations we have also observed that the transition properties are not very sensitive 
to the ratio Cz/C,*,(or C;/C,*,) if it is greater than 20. This is in accordance with 
the observation of Gelbart and Baron [7]. A comparison of the results in table 5 for 
both potential models shows that for a given x the quadrupole interaction leads to 
the smaller values for C,l;/k, the packing fraction and r, whereas the values of 
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Theory of discotic nematic liquid crystals 627 

Figure 4. Order parameters S, packing fraction q (Discotic nematic phase) and change in 
density as a function of x and l /x  for given C,$/k = 6000 K.  Line symbols are same as 
in figure 1. 
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Figure 5. Variation of T,* as a function of C,:/k. Line symbols are the same as in figure 1 .  
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Table 5 .  The discotic nematic-isotropic transition parameters for a system having disc type 
molecules. S, is the order parameter, i j  = +(q + q,),  and q, are the discotic nematic and 
isotropic packing fractions, ( A Z / N k )  the transition entropy and r(T.) is defined in 
equation (36). The model parameters are chosen so as to reproduce the transition 
temperature T,. N 600 K, with C,: /C$ or C,hC,*, = 8. 

( I )  Equation (18) with 0.9 7453.72 0.601 0.0092 0.458 0.727 35.33 1.67 
c,, = 0 0.8 6355.43 0567 0.0163 0.479 0.845 57.28 1.76 

0.7 5110.07 0.509 0.0444 0.541 1.254 118.57 1.85 
0.6 4146.93 0.436 0.1797 0.686 2.784 273.74 1.93 

(2) Equation (18) with 0.9 5733.82 0.544 0.0195 0.480 0.870 69.31 1.46 
c,, = 0 0.8 5191.85 0.512 0.0323 0308 1.053 100.55 1.54 

0.7 4490.41 0.470 0.0812 0.587 1.665 180.33 1.66 
0.6 3870.39 0.397 0.3150 0.732 3.896 418.09 1.80 

A ~ l q ,  S,  ACINk and dT,ldp go up in comparison with the anisotropic dispersion 
interaction. Further, it can be seen that overall the discontinuity in transition proper- 
ties is more pronounced for the anisotropic quadrupole interaction as compared t o  
anisotropic dispersion interaction. A similar trend has been observed [2, 31 in the case 
of ordinary nematic phases also. 

Figure 6 shows the variation of order parameter S with temperature a t  con- 
stant pressure ( p  = 1 bar). The  theoretical result is not compared with experimental 

I I I 1 I 
0.92 0 96 0.96 0.98 0.100 

T/Tc - 
Figure 6. Tcmpcraturc variation of the long-range orientational order parameters at constant 

pressure. C,: / k  are chosen so as to reproduce nematic-isotropic transition temperature 
(T, = 409 K for ordinary nematic and T, = 600 K for discotic nematic). Line symbols 
are the same as figure 1. 
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data because such data are not available in the literature for the isotropic-discotic 
transition. 

In conclusion, our calculation demonstrates remarkable symmetry between phase 
transition properties of rod like molecules (ordinary nematic) and disc-like molecules 
(discotic nematic) which is in agreement with Monte Carlo simulation of Frenkel and 
McTague [8] and with the result of Savithramma and Madhusudana [9]. This we 
physically expect because in ordinary nematics, the role of the director is played by 
the average orientation of the long axes of molecules while in the nematics consisting 
of discotic molecules, the director is the normal to the plane of the predominant 
orientation of molecules. Also, discotic nematic phase having symmetry, D,, x T(3) 
is the analogue of the ordinary nematic phase. It is distinguished from nematic liquid 
crystals formed by rod shaped molecules only by indications of the anisotropy of the 
dielectric permittivity and other tensor characteristics. We have used the decoupling 
approximation to investigate the isotropic discotic nematic transition properties 
which introduces anisotropy in pair correlation function and is exact at very low 
density. It cannot be exact at liquid densities. It is easy to see that the decoupling 
approximation over emphasizes the anisotropy in PCF for parallel configurations and 
under estimates that for perpendicular configurations. However, the decoupling 
approximation has been found to yield the values of the compressibility factor in very 
good agreement with computer simulation results [8, 101. Quantitative agreement 
between theory and experiment cannot be expected because the model system crudely 
simulates real system but the result of the simple approach described in this paper is 
hoped to provide a beginning molecular basis for the thermodynamics of discotic 
nematic liquid crystals. 
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